Closure for the property of having a hamiltonian prism
نویسندگان
چکیده
W c © ??? John Wiley & Sons, Inc. e prove that a graph G of order n has a hamiltonian prism if and only if the graph Cl4n/3−4/3(G) has a hamiltonian prism where Cl4n/3−4/3(G) is the graph obtained from G by sequential adding edges between non-adjacent vertices whose degree sum is at least 4n/3− 4/3. We show that this cannot be improved to less than 4n/3− 5.
منابع مشابه
An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملHamilton cycles in prisms
The prism over a graph G is the Cartesian product G2K2 of G with the complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. c © ???...
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملHamilton cycles in prisms over graphs
The prism over a graph G is the Cartesian product G2K2 of G with the complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be a good measure how close a graph is to being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of hamiltonian prisms.
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 54 شماره
صفحات -
تاریخ انتشار 2007